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ON THE DIOPHANTINE EQUATION X6 + X6 + X3 = y6 + y6 + y6 

JEAN-JOEL DELORME 

ABSTRACT. In this paper, we develop an elementary method for producing para- 
metric solutions of the equation x6 + x6 + x3 =y6+ y6 + y6 by reducing the 
resolution of a system including it to that of the equation 

(s2 + (S1 + tl)2)(52 + (S2 + t2)2)(S2 + (s3 + t3)2) 

=(t2 + (SI + tl)2)(t2 +(2+t)2)(t2 +(3+t)2). - 2+(1 + + (S2 + t2 3+ (S3 + t 

We give such solutions of degrees 4, 5, 7, 8, 9, and 11. 

1. INTRODUCTION 

We say that a solution (xI; X2; X3; Y1 ; Y2; y3) of the equation X6+X6+X6 = 

y6+ y 6 + y36, or of any system including it, is trivial if and only if each of the 
triples (x2; X2; X32) and (y2; y2; y2) may be deduced from the other by a per- 
mutation of its components. The first nontrivial solution, in positive integers, 
was given in 1934 by Subba-Rao [6], viz., 36 + 196 + 226 = 106 + 156 + 236. 
It is "the smallest" nontrivial solution, in that x6 + x6 + x6 is minimum. In 
1967, Lander, Parkin, and Selfridge [5] gave ten nontrivial solutions in integers 
without any common factor. All these solutions, except one, satisfy the addi- 
tional equality x1 + X22 + X2 = y2 + y2 + y2. In 1970, Brudno [2] proved that 
the following system (B1) has an infinity of solutions: 

X16 X26+ X36 =Y6 y6 + 6 
X1+X 2+X3 Y+Y2?+Y3, 

(Bl) |~~~~ X2 + X2 +X 32 =Yl2 +Y y2 +Y y2 
(B1) j I 3 1 2 3 

Y2 = X2 - X3, 

Y3 = X2 + X3. 

In 1974, Brudno and Kaplansky [3] obtained all the solutions of the preceding 
system. In 1976, Brudno [4] exhibited an infinity of solutions of the following 
system (B2) 

XI + X2 +X3 =y6 +y6 +y6 

(B2) X2+X2+X2=y2 + 2+ 2 

3 x +X2+X3 = 3Yi +Y2+Y3, 

in the form of homogeneous polynomial functions of degree four in two pa- 
rameters. At the end of this paper, we mention important results obtained by 
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A. Bremner in 1979. In the following, we shall exclusively consider solutions in 
rational numbers. 

2. PRELIMINARIES 

We first reduce the resolution of a system including the equation x6 + x?6 + 

X3 = y34 +y2 +y3 to that of a system of three quadratic equations. 

Theorem 1. Consider the two systems: 

0 6 + X26 + X36 = y6 + y 6+ + 
(I) + 2+X 2 = Y_2 + 2 + 2 

X Y1 (X12-Y2) +X2Y2(X2 - y2) + X3y3(X_ - y2) - 0 

XI +Xlyl-ylj+X22-x2y2-y2=O. 

(II) j X2 + X2y2-y ?2 + X2 - x3y3 - y 2 = O, 

X32 +x3y3 y-?x2 +X12-Xlly-2 = 0. 

Then the following hold: 
(a) Every solution of (II) is a solution of (I). 
(b) If (xI; x2; X3; Y1 ; Y2; y3) is a nontrivial solution of (I), then (x1; x2; 

x3; Y1; Y2; y3) or (xI; X2; x3; -Y1; -Y2; -y3) is a solution of (II). 

Proofof Theorem 1. For 1 < i < 3, put x2 +xy,-yi2 = Ai and -X2+Xy+yy2 
Bi. It is easily verified that Ai - Bi = 2(x7 - yr), A? B2 = 4xiyi(xi - yr, 

and A? - B3- = 2(x , - x), so that (I) is equivalent to the following system: 

x A1 + A2 + A3 = B1 + B2 + B3, 
(Ibis) 3 2+ A -2 + A 12= B 2+ B2+ B32 

A A3 + A3 + A 33= B13 + B23 + B33 

and (II) is equivalent to {A1 = B1; A2 = B2; A3 = B3}. So every solution of 
(II) is obviously a solution of (I). 

Further, if (x1; x2; x3; Y1 ; Y2; y3) is a nontrivial solution of (I), we eas- 

ily deduce from (Ibis) that (A1 ; A2; A3) is equal to one of the six triples 

(B1; B2; B3), (B1; B3; B2), (B2; B1; B3), (B2; B3; B1), (B3; B1; B2), or 
(B3; B2; B1). 

Now suppose that for some integer i satisfying 1 < i < 3, we have Ai = Bi. 
For instance, assume that A1 = B1 . We then have x 2 + xlyl - y 2 = -x2 + 

x1yl + yl2, hence x 2 = y2 . From the first two equations of (I), we then deduce 
that x6 + X6 = y6 + y6 and x x2 + x2 = y2 + y 2, so that (x22; x2) = (y2; y2) or 
(xi2; x2) = (y2; y2). Thus the solution (x1; x2; x3; Y1 ; Y2; y3) is trivial. 

Finally, (A1 ;A2; A3) is necessarily equal either to (B2; B3; B1) or to (B3; 

B1; B2) ,so that (X1; x2; X3; Y1; Y2; y3) or (xI; X2; x3; -Y1 ; -Y2; -y3) is a 
solution of (II). oI 

3. LINK MATRICES 

Notation. Let (x1; x2; x3; y1 ; y2; y3) be a sextuple of rational numbers. For 

1 < i < 3, put V - (xi) In the following, we shall write (X1; X2; X3; Y1; Y2; Y3) 
or (V1; V2; V3) interchangeably. 
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Using suitable matrices M1, M2, and M3 such that Ml VI = V2, M2V2 = 
V3, and M3 V3 = V1, we reduce the resolution of system (II) to that of a single 
factorized equation. 

Definition. 1. We call every 2 by 2 matrix of rational entries of the form 
(a-b a-b) with determinant -1 a link matrix. 

2. We call every triple of link matrices, (M1; M2; M3), such that the trace 
of the matrix M3M2M1 is zero, a solving triple. 

Theorem 2. (a) Let (V1; V2; V3) be a nonzero solution of (II). There exists a 
unique solving triple such that Ml V1 = V2, M2V2= V3 , and M3 V3= V1 . 

(b) Let (MI; M2; M3) be a solving triple. There exists a nonzero solution 
of (II), (V1; V2; V3), unique apart from a nonzero rational factor, such that 
M1 V1= V1, M2V2= V3, and M3V3 = V1 

Definition. We shall say that (MA1; M2; M3) is the solving triple associated with 
the nonzero solution (V1; V2; V3) of (II), and that (V1; V2; V3) is an antecedent 
solution of the triple (M; M2; M3) . 

Lemma. Let (xI; X2; x3; YI ; Y2; Y3;) be a nonzero solution of (II). For (i, j) 
E {(1; 2), (2; 3), (3; 1)} we have: 

(a) (x7 + xJ)(x7 + xjyj - i?) = (xyj +?yixj)(xixj + xyj - yixj), 
(b) (y? + yj)(x7 + xjyj - y2) = (xjyj + yixj)(yiyj + xiyj - yixj), 
(c) (X,; y,) :A (0; O), Xi2+ Xiy, _y?27 0, xi + xj :A 0, and xiyj+ yiXj :A ? 

Proof. (a) For any rational numbers xI, y1, x2, and Y2, we have the identity 

(x1 + x 1)(x1 + x 1y-y2) - (xIy2 + Y3X2)(XlX2 + X1Y2 - YIX2) 

=X2(X-2 + Xlyy2 + -x2_2- y2). 

If (xI; x2; x3; Y1; Y2; y3) is a solution of (II), we have x2 + xly _ y2 +x 
x2Y2 - Y22 = 0, from which the result follows, for (i; j) = (1; 2). The other 
two cases are obtained by cyclic permutations of the indices 1, 2, and 3. 

(b) Similar proof, with the help of the identity 

(y2 + Y 2)(x2 + Xly - yl2) - (xIy2 + YlX2)(YlY2 + XIY2 - YlX2) 1 2 1 
1~2 

=Yl2(Xl2 + Xlyy2 + -x2y2-y2). 

(c) (i) If, for instance, (xI ; Yi) = (0; 0) , the first equation of (II) implies that 
x2 -x2y2-y2 = 0, so that (x2; Y2) = (0; 0), and the third equation implies that 
x2 + x3y3 - y 2= O ,so that (x3; y3) = (0; O). Thus, (xl; x2; X3; Y1; Y2; Y3) 
would be the zero solution, contrary to our hypothesis. 

(ii) If, for instance, x2?+xIy1 y 2= O, then (xI; y1) = (0; 0), which brings 
us back to (i). 

(iii) If, for instance, x2+x22 = 0, then xi = 0 and x2 = 0. The first equation 
of (II) implies that y2 + y2 = 0, so that yj = 0 and Y2 = 0. Therefore, we 
have (x1 ; y') = (0; 0), which brings us back to (i). 

(iv) By the identity proved in (a), since x? + xJ :A 0 and x7 + xjyj - y? 54 0, 
we have xjyj + yixj : I 0. 
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Proof of Theorem 2. (a) Let (V1; V2; V3) be a nonzero solution of (II). Let us 
solve the system 

Ka, - b a, KXI8 X28 

(ibi a -bi )Y1 ) Y2) 

for a1 and b1. Itmaybewrittenas (x1+yl)al-xib1 =x2, y1a1+(x1-y1)b1 = 

Y2. Its determinant, xl ?+xiy1 _y2, is nonzero, by (c) of the lemma. Therefore, 
it has a unique solution, given by 

X1X2 + XIy2 - YX2 b= Y1Y2 + X1Y2 - Y1X2 

x2+ x1y1 - y 2 X2 + Xly - 2 

By (a) and (b) of the lemma, we also have 

x2 + x~ 2 2+ 
a,= X12 + , Y1 2 

XIY2 + YIX2 X1Y2 + Y1X2 

Finally, 

a, - b = 2x - y _y22 X2Y2 - x1y1 

X1Y2 + Y1 X2 XIy2 + Y1X2 

from the first equation of (II). Thus, 

Mi= 1 (x2Y2 - XY1 X2+ ) 
XIY2 + YIX2 Y 2+ Y2 X2Y2 X1Y1 

It then follows from Lagrange's identity that det(M1) = -1. Analogous proofs 
hold for M2 and M3, by cyclic permutations of the indices 1, 2, and 3. So there 
exists a unique triple (M1; M2; M3) of link matrices such that M1 V1 = V2 

M2 V2 = V3, and M3 V3 = V1 . 
Now we prove that the trace of the matrix M3M2M1 is zero. It is easily 

verified that for any elements of a commutative ring, a1, a2, a3, b1, b2, and 
b3 we have 

Tr(a3 - b3 a3 )a2 -b2 a2 )(a,- b a, 
b3 a3 - b3 b2 a2 - b2 bi a1 - bI 

= 2(ala2a3 - b b2b3). 

It follows that Tr(M3M2MI) = 2N, with 

N =(x 2 + X22)(X22 + X32) (X2 + X12) _ (yl2 + y22) (y2 + y2) (y2 + y2 ) 

D = (XIy2 +yIx2)(x2y3 +Y2x3)(x3yI +Y3XI). 

We may write 

N = ((X 2 + X2 +X32)3 - (x 6 + X 6 + X36) _ (Yl2 + Y2+ Y 23)+ (Y6 + Y6 +Y3)) 

Now every solution of (II) is, by Theorem 1, a solution of (I), so that x6 + X6 + 
X3 = yI + y2 + y3 and xi + X22 + X3y = Y 2 +y y3 . It follows that N =O, so 
that Tr(M3M2M,) = 0. Thus, (MI; M2; M3) is indeed a solving triple. 

(b) Let (MI; M2; M3) be a solving triple. We have det(M3M2M,) = -1, 
because det(Mi) = -1 for 1 < i < 3, and Tr(M3M2M1) = 0. Hence, the 
matrix M3M2M1 has the eigenvalues 1 and -1 . Let V1 be an eigenvector of 
M3M2M1, with rational coordinates, associated with the eigenvalue 1. Define 
V2 and V3 by MlVI = V2 and M2V2 = V3. We have M3V3 = M3M2V2 = 
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M3AM2AM1 V1 = V1 . We now prove that (V1; V2; V3) is a solution of (II). We 
have 

X28 (a, -b1 at (X 

Y2 b1 a,-bi} kY1 
It follows that 

x2 - x2y2 - = det + xy - 1 

Now det(Ml) = -. We obtain x +xyi1 -y +x -x2y2-y2 = 0, which is the 
first equality of (II). The other equalities are obtained by cyclic permutations of 
the indices 1, 2, and 3. Therefore, (V1, V2, V3) is a solution of (II), nonzero, 
since V1 is nonzero. E 

Remark. If (M1; M2; M3) is a solving triple, so is (M1; M2; -M3). 
We say that two nonzero solutions of (II) are conjugate if and only if, one 

being an antecedent solution of a solving triple (M1; M2; M3), the other is 
an antecedent solution of the solving triple (M1; M2; -M3). If we consider 
two such solutions, (V1; V2; V3) and (V1'; V2'; V3'), then V1 and VJ' are two 
eigenvectors of the matrix M3M2M1 associated with the eigenvalues 1 and -1, 
respectively. We shall use this remark in ?4. 

Theorem 3. The link matrices are matrices of the form I (X-Y x), with 
X = s2+(s+t)2, Y=t2+(s+t)2, and Z = s2 + 3st + t2, where (s; t) is an 
arbitrary nonzero pair of rational numbers. 

Proof. Every matrix M of the type given in Theorem 3 is of the form (aMb a-b)' 
with a = x and b = Y; it is easily verified that its determinant is -1 . So M z z 
is a link matrix. 

Conversely, let M be a link matrix. We have MA (abb a-b), and the 
determinant of M is -1, so that a2 - 3ab + b2 = 1. Consider the following 
system in s and t: 

(a-b- 1)s+(2a-b)t=0, 
(a - 2b)s + (a - b + 1)t = 0. 

Its determinant, equal to -a2 + 3ab - b2 _ 1, is zero. Hence this system 
has nonzero solutions in rational numbers. Let (s; t) be one of them. Put 
wO = (I + V)/2 and Ci) = (I - V)/2. Then (co; -) is a basis of the Q-vector 
space Q[V5-], so that the preceding system is equivalent to the equality 

[(a - b - l)s + (2a - b)t]w + [(a - 2b)s + (a - b + l)t]&6 = 0. 

We may write this in the form (awo + bci)(two - scii) = sw - ti&i. Now (s; t) :$ 
(0; 0), hence tw - s-&$ O, and swo - t65$O 0. From this we deduce 

aco + NO =o = 
6 So-t() 

t50 - st (t sw -S)(so-t) 

(2S2 + 2st + t2)( + (s2 + 2st + 2t2)i 

S2 + 3st + t2 
hence 

a-s 
2 + (s + t)2 adb=t2 + (s + t)2 a=- and b= - - . o 

=2+3st~2 s2?3st~t2~ 
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Remark. We can give s and t explicitly in terms of a and b. Indeed, the 
numbers a - b - I and a - b 1 cannot both be zero. If, for instance, a - b - I :$ 
0, the system in s and t is equivalent to the equation (a - b - 1)s+(2a - b)t 
= 0, whose nonzero solutions (s; t) are given by s = K(-2a + b) and t = 
K(a - b - 1), with K E . 

From Theorems 2 and 3, we deduce the following consequence. Let Mi, 
with 1 < i < 3, be three link matrices of the type given in Theorem 3, 

M +(Xi-Yi XI 

Then (MI; M2; M3) is a solving triple if and only if the trace of the matrix 
M3M2M1 is zero, hence, from the proof of Theorem 2, if and only if X1 X2X3 = 

Y1 Y2 Y3; this may be written as 

(S 2 + (SI + tl)2)(s2 + (52 + t2)2)(s2 + (53 + t3)2) 

= (t2 + (SI + tl)2)(t2 + (52 + t2)2)(t2 + (53 +)2). 

We call this last equality the condition of closure. 

4. SOLUTIONS OF THE DIOPHANTINE EQUATION 

Using the condition of closure, we now give solutions of system (II). First we 
need matrices slightly simpler than link matrices. 

Definition. We call every matrix L of the form L = (X _ x' y) with X = 

s2 + (S + t)2, y = t2 + (S + t)2, s and t rational numbers, (s; t) $ (0; 0) a 
pre-link matrix. We shall adopt the abbreviated notation L = (; y ). 

1st solution. The simplest solution consists in looking for triples of pre-link 
matrices of the form 

L3L2LI = A . B * C *) 

We may choose, for instance, 

L3= ( ~t* (S + t)2 + S2 ) L2 ( + t)2 + t2, 
S2+t2 (5+J 2+t 2 ( * + 

LI ((s + t)2 + t2 * _ ' s t 2\f (0; 0)}. 

The matrices Li, for 1 < i < 3, are obviously pre-link matrices, and the 
condition of closure is satisfied. From this we deduce a solving triple, 

-l1 
( -2st-t2 s2 + t2 > 

-_2 - st + t2 (s + t)2 + t2 -2st -t2} 

1 z t2-s2 (S+t)2 +t2> 
M2 s2+3st+t2k(s+t)2+S2 t2-s2 ) 

1 (s2+2st (s+t)2 +s 2 
M3 =2 - st - t2 K 2 + t2 s2+ 2st J 

We find that 

M3M2MI = 1 (a1l a12 D a21 a22J 
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with 
D = -S6 -3st +2S4t2 +9S3t3 +2s2t4 -3st5 -t6, 
a11 = -s6 -6s't -6S4t2 +6S2t4 +6st5 +t6 
al2 = 3s6 +8s't +9S4t2 -4s3t3 -9S2t4 -2st5, 
a21 = -2s't -9S4t2 -4S3t3 +9S2t4 +8st5 +3t6, 
a22 =-al 1. 

The eigenvalue 1 of the matrix M3M2M1 leads to the antecedent solution 
(s; t; -(s + t): t; -(s + t); s), which is trivial and nonzero. 

In the case of the eigenvalue -1, write I for the identity matrix and put 
P(s; t) = 3S 5+ 8s4t + 9S3t2 - 4S2t3 - 9st4-2t5 . We find that 

M3M2M1+I= 1(sP(t; s) sP(s; t) 

Therefore, an eigenvector of M3M2M1 associated with the eigenvalue -1 is 
V1 = (XI), with x1 = P(s; t) and y, = -P(t; s). The vectors V2 and V3 are 
calculated by V2 = M1 V1 and V3 = M2 V2 . We then find 

xi = 3s + 8s4t + 9S3t2 - 4S2t3 _ 9st4 - 2t5 

X2 = -2s _ s4t + 12s3t2 + 13s2t3 + 4st4 -t5 

X3 = -S5 - 9s4t- 13s3t2 - 7S2t3 - 7st4 - 3t5, 

S( Y y = 2s5 + 9s4t+ 4s3t2 _ 9S2t3 - 8st4- 3t5, 

Y2 = -3S - 7s4t - 7S3t2 _ 13S2t3 _ 9st4 -t 

Y3 = -S + 4s4t + 13s3t2 + 12s2t3 - St4 - 2t5. 

Remarks. 1. This solution may be characterized by the fact that it is the conju- 
gate solution of the trivial solution (s; t; -(s + t); t; - (s + t); s) . This explains 
in a simple way the remarkable property of this parametrization, noticed by J. 
H. Conway (see [1, p. 574]). 

2. The 6 by 6 determinant of the sextuple (x1; x2; X3; Yi; Y2; y3) in the 
basis (s5; s4t; s3t2; s2t3; st4; t5) is nonzero. So, contrary to the case of the 
solutions of systems (B1) and (B2), the polynomial functions x1, X2, x3, 
Yi, Y2, and y3 are linearly independent. 

2nd solution. We look for triples of pre-link matrices of the form 

L3L2L1=(0 B D AC) L3L21 = A * ) C * BD *) 

Thus the condition of closure is satisfied. 
Put 

s2 + (s + t)2) 
L3= t2 + (s + t)2 

and 
u2 + (U + V)2) 

L2 V2 +(U +V)2 * J 

We have 

X = AC = (t2 + (s + t)2)(v2 + (u + v)2) = (su + sv + tu + 2tv)2 + (sv -tu)2 
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and 

Y1 = BD = (s2 + (s + t)2)(U2 + (U + V)2) = (2su + sv + tu + tv)2 + (sv -tu)2. 

For L1 to be a pre-link matrix, it is sufficient that 

(su + sv + tu + 2tv) + (2su + sv + tu + tv) = (sv - tu). 

This may be written as (3s + 3t)u = -(s + 3t)v. Therefore, we may choose 
u = s + 3t and v = -(3s + 3t) . From this we deduce a solving triple, 

M3 = 
I 

( t 2 + (S + t)2 , with Z3 = -(s2 + 3st + t2), 

I 1 t . (s + 3t)2 + (25)2) 
M2 =Z2 t(3s +3t)2 + (2s)2 * 

with Z2 = -S2 + 12st + 9t2, 

1 / . (5~~~~~~~(s2-st)2+ (3s2+45t+3 t2)2 
ml= Z (2s2+ 5st+ 3t2)2+(3s2+4st+3t2)2 

( ) 

with Z1 = 1 Is4 + 27s3t + 32s2t2 + 21st3 + 9t4. 

From the eigenvalue 1, we obtain the parametric solution 

xI = 3s4 + 9s3t + 18s2t2 + 21st3 + 9t4, 

X2 = 2s4 + 4s3t - 5s2t2 _ 12st3 -_9t4 

X3= -s4 Os3t - 17s2t2 _12st3 

S(4; 4; a)| Y1 = s4- 3s3t - 14s2t2 _15st3 -_9t4 

Y2 = 3s4 + 8s3t + 9S2t2, 

y3 = 2s4 + 12s3t + 19s2t2 + 18st3 + 9t4. 

Apart from exchanging x1 and x2, this is Brudno's solution [4] of (B2). From 
the eigenvalue -1 , we obtain 

xi = 67s4 + 165s3t + 178s2t' + 81st3 + 9t4, 

X2 = 36s4 + 140s3t + 189s2t2 + 108st3 + 27t4, 

X3 =37s 4?+42s 3t -13s 2t2- 48st3-_18 t4 
S(4; 4;b) Yi = 15s4 - 9s3t- _ s2t2 + 3st3 + 9t4, 

Y2 = 65s4 + 152s3t + 169s2t2 + 96st3 + 18t4, 

Y3 = -52s4 - 152s3t - 167s2t2 - 102st3 - 27t4. 

Apart from multiplicative coefficients, permutations, and changes of signs, this 
solution is deduced from the preceding one by the transformation s' = 2s + 3t, 
t' = -3s - 2t, which realizes a one-to-one mapping from Q2 onto Q2. 

Remark. Every solution of the system 

XI + x2 +X36 = y6 +y26 +y6 

21 +i 12 + 2 Y2 + Y2 X1 + 2X3 =y1 +y2+y3 

I x+ 3X2+ X3 =3y1 ? Y2 +Y3 
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(that is, (B2), apart from exchanging xI and x2) is a solution of (II), therefore, 
a fortiori, of (I). In particular, it satisfies the additional equality 

xJyi (x2 -y_2) ?x2y2(x _-y2) x3y3(x2 _ y2) = 0. 

3rd and 4th solutions. We look for pre-link matrices of the form 

L3L2L1=(A B)(BX .)(C Ax) 

The condition of closure is automatically satisfied. Put 

L3= (52; 2 (s+t)2+t2) 

and X = u2 + v2 . We have 

BX = ((s + t)2 + t2)(U2 + V2) = (US + ut + vt)2 + (vs + vt-ut)2. 

Put us+ut+vt=b, and vs+vt-ut=b2. Thuswehave BX=b2?+b22 
For L2 to be a pre-link matrix, it is sufficient that C = b2 + (b? + b2)2, that is, 
C = (us + Ut + Vt)2 + (us + vs + 2vt)2. In the same way, 

AX = (s2 + t2)(u2 + v2) = (us + Vt)2 + (vs -ut)2. 

Put us + vt = a, and vs - ut = a2. We have AX = a2 + a2. For LI 
to be a pre-link matrix, it is sufficient that C = a2 + (a, - a2)2, that is, C= 
(us + vt)2 + (us + Ut - vs + vt)2. 

By equating the two expressions of C, we obtain, after cancelling, 

v2(6st + 3t2) = uv(-4s2 - 4st). 

If v = 0, we recover our first parametric solution. If v :$ 0, we may choose 
u = 6st + 3t2 and v = -4S2 - 4st. From this we deduce LI, L2, and L3, then 
MI, M2, and M3. The two eigenvalues 1 and -1 of the matrix M3M2M1 
lead to the following two parametric solutions: 

XI = 16s5 + 64s4t + 104s3t2 + 1 16s2t3 + 78st4 + 27t5, 

x = 16s5 + 24s4t + 48s3t2 + 52s2t3 + 57st4 + 18t5, 
I = 16s5 + 32s4t + 52s3t2 + 48s2t3 + 2 1st4 - 9t5, 

Y, = 16s5 + 48s4t + 84s3t2 + 76s2t3 + 33st4 + 18t5, 

Y2 = 16sS + 56s4t + 1 12s3t2 + 108S2t3 + 81st4 + 27t5, 

y3 = 16s5 + 16s4t + 8s3t2 - 28s2t3 - 18st4 - 9t5 

and 

XI = [16; 64; 160; 308; 416; 397; 262; 139; 54; 9], 

x2 = [-16; -56; -80; -12; 119; 234; 233; 126; 27; 0], 

I S 9 Ix3 = [16; 96; 236; 368; 387; 261; 75; -41; -39; -9], 

Yi = [-16; -48; -44; 60; 225; 290; 231; 106; 21; 0], 

Y2 = [16; 88; 208; 324; 369; 355; 281; 149; 51; 9], 
Y3 = [-16; -80; -224; -364; -360; -199; -34; 51; 42; 9]. 
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In this last case, we write [ao; ... ; a9] to denote the polynomial, homogeneous 
in s and t, a0s9 + *** + a9t9. 

5th and 6th solutions. As in the preceding case, we look for triples of pre-link 
matrices of the form 

L3L2L1=( . C)( AX) 

Put, this time, 

L3=( 2 2 (u+v)2+v2) 

and X =s 2 + t2. We have 

BX = ((u + v2) + V2)(S2 + t2) = (SU + sv + tv)2 + (sv- tU - tv)2. 

Put su + sv + tv = b1 and sv - tu - tv = b2. We have BX = b2+ b2. 
For L2 to be a pre-link matrix, it is sufficient that C = (b1 + b2)2 + b2, that is, 
C = ((s - t)u + 2sv)2 + (-tu + (s - t)v)2. In the same way, 

AX = (u2 + V2)(S2 + t2) = (SU + tv)2 + (sv - tu)2. 

Put su + tv = a1 and sv - tu = a2. We have AX = a2 + a22. For L1 
to be a pre-link matrix, it is sufficient that C = (a1 + a2)2 + a2, that is, C = 
((s - t)u + (s + t)v)2 + (-tu + SV)2. 

By equating the two expressions of C, we obtain uv(2s2 - 4st + 4t2) = 
v2(-3s2 + 4st). If v = 0, we obtain 

L3 =u2 *) 

hence M3 = (? 1), yielding a trivial solution. If v :$ 0, we may choose 
u = _352 + 4st and v = 2s2 - 4st + 4t2. From this we deduce in succession 
L1, L2, L3, Ml1, M2, M3, then the following two parametric solutions: 

XI = [15; -96; 295; -628; 920; -880; 608; -320; 64], 

X2= [-25; 163; -483; 896; -1220; 1200; -784; 384; -128], 

S(8; 8; a) X3 =[-5; 22; -84; 284; -620; 880; -816; 512; -192], 

Yi = [-25; 162; -480; 908; -1220; 1200; -816; 320; -64], 

Y2 = [15; -109; 309; -544; 800; -960; 832; -512; 192], 

Y3 = [-5; -12; 143; -376; 580; -720; 656; -384; 128] 

and 

XI = [13; -28; 31; 68; -160; 336; -256; 192; -64], 
x2 = [-21; 55; -151; 240; -380; 368; -240; 128; 0], 

S(8; 8;b) X3 = [1; -58; 166; -308; 460; -368; 304; -128; 64], 
Yi = [-21; 54; -154; 268; -300; 368; -272; 192; -64], 
Y2 = [13; -39; -1; 48; -200; 256; -288; 128; -64], 
Y3 = [-1; -64; 161; -320; 420; -432; 272; -128; 0]. 
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7th and 8th solutions. We look for triples of pre-link matrices of the form 

L3L2L= (AY BX)(BZ CY) (CX Z) 

The condition of closure is obviously satisfied. Put 

= ( *2?t2~C2?d2) ((s + t)2 + t2)(a2+ b2)) L3 = (S2 + t2) (C2 + d 2) * 

0 ~~(52 + ( +t)2)(C2 + d2) 
L2 = 

((t2+(s+t)2)(e2+ f2) 
( 

L1=( ~ * b (s2 + t2)(e2 +f2 

L1=V((s + t)2 + S2)(a 2 + b 2)* J 

We may write 

L3 (Z3 ; + . 3 ), with: zX3=-as-at+bt, Y3=-bs-bt-at, L (Z4T2 wih:Z=cs~dt, T3 =ds -ct, 

* X2+Y with X2= cs-ds-dt, Y2=ds+cs+ct, L2=(Z4T2 wth 
2VZ2+T 2 * J Z2=et-fs-ft, T2=ft+es+et, 

0 X2 2 ~~XI=et~fs, j=ft -es, L=( ;T2 Xi =) with Z1=-as-at+bs, T1=-bs-bt-as. 

For every matrix Li to be a pre-link matrix, it is sufficient that Y1 = Ti and 
XI+Zi+ T1 = O (for 1 < i < 3). 

Now if Y, = Ti for I < i < 3, we have Y? + Y2 + Y3= T + T2 + T3. 
After cancelling, this equality is reduced to s(a + c - 2e) = t(a - 2c + e). 
A sufficient condition is that a + c - 2e = 0 and a - 2c + e = 0, that is, 
a = c = e . By replacing c and e by a in every equality Y1 = Ti, we obtain the 
equalities -b(s + t) = ds = ft. A simple sufficient condition is that b = -2st, 
d = 2t(s + t), and f = 2s(s + t) . 

Then, if we replace c and e by a, b by -2st, d by 2t(s + t), and f 
by 2s(s + t) in the equalities Xi + Zi + Ti = 0 for 1 < i < 3, we obtain 
t(a - s2 _ st - t2) = 0, (s + t)(a - s2 - St - t2) =0, and s(a - s2 - st - t2)= 0. 

A simple sufficient condition is that a = S2 + St + t2. There follow the 
parametric solutions 

XI = [2; 7; 15; 18; 9; 2; 1; 1], 

X2 = [1; 1; -4; -17; -22; -15; -7; -2], 

IS(71 II X3 = [-1 ; -6; - 17; -21 ; - 17; - I 1; -6; - 1], 

Yi = [-1; -1; -2; -9; -18; -15; -7; -2], 

Y2 = [1; 6; 11; 17; 21; 17; 6; 1], 
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and 
xl = [8; 43; 167; 547; 1296; 1863; 1631; 927; 352; 

63; -17; -5], 
X2= [-1; 39; 213; 610; 1005; 939; 587; 412; 341; 

177; 45; 8], 
x3= [5; 38; 42; -155; -769; -1554; -1744; -1217; 

S( I7 - 613; -232; -50; -1], 
Yi = [-5; -17; 63; 352; 927; 1631; 1863; 1296; 547; 

167; 43; 8], 

Y2 = [1; 50; 232; 613; 1217; 1744; 1554; 769; 155; 
- 42; -38; -5], 

Y3 = [-8; -45; -177; -341; -412; -587; -939; 
- 1005; -610; -213; -39; 1]. 

Remarks. 1. Consider system (B1) that Brudno and Kaplansky [3] solved, by 
having recourse to the rational points on a cubic. It is easily verified that, for 
every solution of (B1), 

if xIx2x3y1 < 0, then (x1 ; X2; x3; Yi ; Y2; -y3) is a solution of (II) 

and 

if xIx2x3y1 > 0, then (x1 ; X2; x3; -Yi; Y2; -y3) is a solution of (II). 

So it is natural to consider, for instance, the following system (B1 -II), deduced 
from (B1) by replacing Y3 by -Y3, and by adding an inequality to it: 

X6 + 26 + 6 y6 +y +y , 
r 

+'2 3 1+2 2 
x2 +x +X3 =yj2+y2 + y32 

(B1-II) Y2 = X2-x3, 
-Y3 = X2 + X3, 
XIX2X3Yl < ?- 

From the beginning of this remark, every solution of this system is a solution 
of (II). More precisely, a nonzero solution of (II), with associated solving triple 
(M1; M2; M3), is a solution of (BI-II) if and only if M2 = ( 2 -1) ) 

2. The seventh solution of Lander, Parkin, and Selfridge [5], after exchanging 
Yi and Y2, that is, put in the form (51; 113; 136; 125; 40; 129), is a solu- 
tion of (II). However, an examination of its solving triple shows that it can be 
obtained neither as one of Brudno's solutions of systems (B1) or (B2), nor by 
one of our parametric solutions. 

3. Permutations and changes of signs apart, all the known solutions of the 
system 

{ XI + X2 + X3 = y6 +y2 +y3 
1 xl 22+ 32 =yl + y22 + y32 

are solutions of (II). It is still an unsolved problem to find a counterexample. 
4. In 1979, Bremner [1] studied the surface V defined by (II), by using 

techniques of algebraic geometry. He determined a basis for the Neron-Severi 
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groups of V over the fields Q(i) and Q, and he exhibited a system of thirteen 
generators over Q. This allowed him to determine all parametric solutions of 
(II) of a given degree thanks to an algorithm whose results corroborate our own, 
sometimes, however, with difficulty. 

It would be interesting to determine how our results could be interpreted in 
terms of the framework of [1], but this does not seem straightforward. 
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